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Abstract. We present a new approach to treat nonlinear operators in reduced basis approxi-
mations of parametrized evolution equations. Our approach is based on empirical interpolation of
nonlinear differential operators and their Fréchet derivatives. Efficient offline/online decomposition is
obtained for discrete operators that allow an efficient evaluation for a certain set of interpolation func-
tionals. An a posteriori error estimate for the resulting reduced basis method is derived and analyzed
numerically. We introduce a new algorithm, the PODEI-greedy algorithm, which constructs the
reduced basis spaces for the empirical interpolation and for the numerical scheme in a synchronised
way. The approach is applied to nonlinear parabolic and hyperbolic equations based on explicit or
implicit finite volume discretizations. We show that the resulting reduced scheme is able to capture
the evolution of both smooth and discontinuous solutions. In case of symmetries of the problem,
the approach realizes an automatic and intuitive space–compression or even space–dimensionality
reduction. We perform empirical investigations of the error convergence and run–times. In all cases
we obtain a good run–time acceleration.
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1. Introduction. The numerical solution of parametrized partial differential
equations can be a very time-consuming task if many parameter constellations have
to be simulated by high-resolution schemes. Such scenarios may occur in parame-
ter studies, optimization, control, inverse problems or statistical analysis of a given
parametrized problem. Reduced Basis (RB) methods allow to produce fast reduced
models that are good surrogates for the original numerical scheme and allow pa-
rameter variations. These methods have gained increasing attention in recent years
for stationary elliptic, instationary parabolic problems and various systems. In this
contribution, we address the task of model reduction for parametrized evolution equa-
tions. These are problems which are characterized by a parameter vector µ ∈M from
some set of possible parameters M ⊂ Rp. For a given µ the evolution problem con-
sists of determining u(x; t,µ) on a bounded domain Ω ⊂ Rd and finite time interval
t ∈ [0, T ], T > 0 such that

∂tu(t,µ) + L(t,µ) [u(t,µ)] = 0, u(0,µ) = u0(µ), (1.1)

and suitable boundary conditions are satisfied. Here u0(µ) are the parameter de-
pendent initial values and L(t,µ) is a parameter dependent spatial differential oper-
ator. The initial value and the solution are supposed to have some spatial regularity
u0(µ), u(t,µ) ∈ W ⊂ L2(Ω).
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For the discrete solutions an H-dimensional discrete Hilbert space Wh ⊂ L2(Ω)
with a suitable norm ‖·‖Wh

is assumed. Evolution schemes produce discrete solutions

ukh(µ) ∈ Wh, k = 0, . . . ,K approximating u(tk,µ) at the time instants 0 = t0 < t1 <
. . . < tK = T . These high-dimensional, detailed simulations are frequently expensive
to compute due to the high space resolution and not suitable for use in multi-query
settings, i.e. multiple simulation requests with varying parameters µ.

Reduced Basis (RB) methods are increasingly popular methods to solve such
parametrized problems, aiming at reduced simulation schemes which approximate the
detailed solutions ukh(µ) by efficiently computed reduced solutions ukred(µ) ∈ Wred.
Here Wred ⊂ Wh ⊂ L2(Ω) is an N -dimensional reduced basis space with suitable
reduced basis ΦN . The latter is generated in a problem specific way based on snap-
shots. In particular, reduced basis methods have been applied successfully for various
elliptic and parabolic problems, mainly based on finite element discretizations. For
linear elliptic problems we refer to [22], linear parabolic equations are treated in [11].
Extensions to nonlinear equations [25, 9] or systems [23] have also been developed.
For reduced methods based on finite volume discretizations we refer to [16].

In this contribution, we develop a new reduced basis framework for nonlinear par-
tial differential equations. The approach is applicable to a large class of discretization
schemes that are based on evaluations of discretized operators and their directional
derivatives only. We exemplify our approach for finite volume schemes where Newton
iterations are used for the solution of the resulting non-linear systems. The main
ingredient that allows to guarantee this extent of generality is the empirical operator
interpolation for discrete operators and their directional derivatives. A further trail
of our extension is the derivation of a new a posteriori error estimate that can be used
for error control and - in particular - to speed up the basis construction procedure in
the offline phase of the reduced algorithm.

The idea of empirical interpolation was first proposed for data functions in [1] and
used for reduced basis methods for elliptic and parabolic problems in [10, 20, 9, 2].
Preliminary results of the empirical operator interpolation for purely explicit operators
were presented in [17, 7]. In the context of model reduction with proper orthogonal
decomposition (POD)-methods, empirical interpolation for nonlinear finite difference
matrices and their Jacobians was introduced in [4].

The structure of our paper is as follows: Section 2 introduces the empirical oper-
ator interpolation in full generality and explains its application on directional deriva-
tives of discrete operators. As already mentioned, this is the key ingredient of our
generalized reduced basis approach. In §3 a numerical scheme for evolution schemes is
formulated including explicit and implicit contributions both depending nonlinearly
on the solution. This scheme is the foundation for the reduced basis scheme presented
in §4. We elaborate on the generation of the reduced basis space by the POD-greedy
algorithm and on the nature and the costs of the offline/online-decomposition. A new
a posteriori error estimator is derived in §5. In the experimental Section §6 we demon-
strate the applicability of the resulting method for both smooth and discontinuous
data subject to nonlinear convection and diffusion. Experimentally, we investigate
the approximation properties and demonstrate the run–time gain compared to the
full finite volume schemes. We conclude in §7.

2. Operator Approximation by Empirical Interpolation. The reduced ba-
sis method requires the underlying numerical scheme to be written in a separable form
allowing efficient decomposition of parameter dependent scalar functionals and pre-
computed parameter-independent operator parts. Therefore, we now introduce the
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empirical operator interpolation in order to approximate a - linear or nonlinear -
parametrized discrete operator with a surrogate in a separable form suitable for ef-
ficient evaluations in a reduced basis scheme. The empirical interpolation method
for operators as presented in this section gives rise to a reduced basis framework ap-
plicable for a very general class of numerical schemes for evolution equations. The
operator based approach gives us the opportunity to rewrite numerical schemes by
substituting the spatial operators with their empirical interpolants and to develop
reduced schemes based on the high dimensional ones. For details we refer to §3 and
§4. In §2.1 we also show that the directional derivative of a discrete operator can be
interpolated efficiently.

Before we start with the description of the empirical operator interpolation, we
introduce some notation used subsequently. We write Wh for a discrete function
space defined on a closed subset Ω ⊂ Rn with a non empty interior and a polygonal
boundary. Following the notation of a finite element by P.G. Ciarlet [5], we define the

set Σh := {τi}Hi=1 ⊂ W ′h of linearly independent functionals, which are unisolvent on
Wh, i.e. there exist unique functions ψi ∈ Wh, i = 1, . . . ,H which satisfy

τj(ψi) = δij , 1 ≤ j ≤ H.

The linear functionals τi, i = 1, . . . ,H are called the degrees of freedom (DOFs) of
the discrete function space Wh and the functions ψi, i = 1, . . . ,H are called basis
functions. Note that these basis functions can e.g. be finite element, finite volume or
discontinuous Galerkin basis functions on a numerical grid Th ⊂ Ω.

We proceed to discretizations of (1.1) which is why from now on, Lh(t,µ) always
denotes a discretized (non-linear) operator acting on an H-dimensional discrete func-
tion space Wh. In order to decompose the computations in an efficient online and an
offline phase for high-dimensional data, the scheme must be formulated in a separable
way, i.e. the discrete operators are written as a sum of products of efficiently com-
putable parameter dependent functionals and high-dimensional basis functions that
can be precomputed during the offline phase. Hence, we approximate the discrete
operators by a separable interpolant IM [Lh(t,µ)] of the form

IM [Lh(t,µ)] [vh] :=

M∑
m=1

τEI
m (Lh(t,µ) [vh]) ξm ≈ Lh(t,µ) [vh] (2.1)

for all vh ∈ Wh with a parameter independent but space dependent collateral re-
duced basis ξM := {ξm}Mm=1 ⊂ WH and functionals τEI

m : Wh → R which must be
computable with complexity independent of H. The sum is assumed to contain few
terms, i.e. M � H. Such a separable approximation is obviously fully specified by
defining the basis functions ξm, and the functionals τEI

m ,m = 1, . . . ,M . One can think
of many reasonable choices for basis functions and corresponding coefficient function-
als, but we focus on a specification resulting in the empirical operator interpolation.

2.1. Empirical Operator Interpolation. In this section, we adapt the em-
pirical interpolation method introduced for functions in [1] for discretized operators.
Firstly, we specify the generation of the collateral reduced basis space WM := 〈ξM 〉
and the coefficient functionals. Secondly, we show that the functionals can be com-
puted efficiently, i.e. with complexity independent of the discrete function space di-
mension H. As a further extension, we show that the Fréchet derivative of a discrete
operator can be efficiently approximated with the same collateral reduced basis as the
operator itself.
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Algorithm 2.1 Abstract algorithm for greedy basis generation

X-greedy(Mtrain, εtol,Υmax )
– Initialize reduced basis of dimension Υ0:

DΥ0
← X-InitBasis()

Υ← Υ0

repeat
– Find parameter and time instance of worst approximated snapshot:

(µmax, tmax)← arg max(µ,t)∈Mtrain×[t0,...,tK ] X-ErrorEstimate(DΥ,µ, t)
– Extend reduced basis by snapshot:

DΥ+γ ← X-ExtendBasis(DΥ,µmax, tmax)
Υ← Υ + γ

until max(µ,t)∈Mtrain×[t0,...,tK ] X-ErrorEstimate(DΥ,µ, t) ≤ εtol or Υ > Υmax

return reduced basis: DΥ

Collateral basis generation. The method can briefly be expressed based on a
set of interpolation DOFs ΣM := {τEIm }Mm=1 ⊂ Σh and a corresponding interpolation
basis ξM , i.e. τEIm′ [ξm] = δm,m′ for 1 ≤ m,m′ ≤ M . The generation process for
these components works similarly to the algorithms described in the original empirical
interpolation paper [1] in which point evaluations in so-called “magic points” are used
as interpolation DOFs after the basis functions were selected.

The main idea is a greedy algorithm which iteratively enhances the reduced space
with a new basis function. The selection of these basis functions is controlled by an
error estimate which is minimized over a finite set of parameters Mtrain ⊂ M and
time instances [t0, · · · , tK ]. Algorithm 2.1 describes this strategy in an abstract way.
We want to use this algorithm several times throughout this paper by specifying the
methods

(i) X-InitBasis() initializing the reduced basis,
(ii) X-ErrorEstimate() estimating the error between high dimensional and

reduced snapshots and
(iii) X-ExtendBasis() adding solution snapshot to the reduced basis space.

The number of added solution snapshots γ can be greater than 1.

The specialization of these methods for generating the collateral reduced basis
and interpolation DOFs needed for the empirical interpolation of a specific discrete
operator Lh(t,µ) :Wh →Wh are given in Algorithm 2.2. Here, the greedy algorithm
is used in the following way: The reduced basis data DΥ := (QΥ,ΣΥ) comprises

the interpolation DOFs ΣΥ :=
{
τEIi

}Υ

i=1
and the collateral reduced basis functions

QΥ := {qi}Υi=1. The initial basis shall be empty and in each extension step, the
interpolation error is used as an indicator for basis function selection. In the following,
we denote the dimension of the final collateral reduced basis data with the upper case
letter M . The algorithm defined by Algorithm 2.1 and specialized by the methods
from Algorithm 2.2 will be named EI-greedy in the following.

Remark 2.1. The nodal basis ξM introduced in equation (2.1) is constructed
from a basis QM := {qm}Mm=1 made out of basis functions with a different structure,
such that τEIm [qm] = 1 and τEIm′ [qm] = 0 for all m′ > m. Unlike the nodal basis, QM

is constructed iteratively, such that QM−1 ⊂ QM and the basis functions’ maximum
norm is bound by one ‖qm‖L∞(Ω) ≤ 1. The nodal basis ξM allows a simpler exposition
of the functionals, and can be efficiently constructed from QM , as the column matrix
of basis vectors qm,m = 1, . . . ,M has lower–triangular shape. In [1, 10] it is shown
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Algorithm 2.2 Methods for collateral reduced basis generation EI-greedy

EI-InitBasis()
return empty initial basis: D0 ← {}
EI-ErrorEstimate((QM ,ΣM ) ,µ, tk)
– Compute exact operator evaluation

vh ← Lh(tk,µ)[ukh(µ)]

– Compute interpolation coefficients σM (vh) :=
(
σMj (vh)

)M
j=1
∈ RM

by solving the linear equation system

M∑
j=1

σMj (vh)τEIi [qj ] = τEIi [vh] , i = 1, . . . ,M (2.3)

return approximation error:
∥∥∥vh −∑M

j=1 σ
M
j (vh)qj

∥∥∥
Wh

EI-ExtendBasis((QM ,ΣM ) ,µ, tk)
– Compute exact operator evaluation

vh ← Lh(tk,µ)[ukh(µ)]

and interpolation coefficients σM (vh) :=
(
σMj (vh)

)M
j=1
∈ RM from (2.3).

– Compute the residual between vh and its current interpolant.
rM ← vh −

∑M
j=1 σ

M
j (vh)qj

– Find interpolation DOF maximizing the residual.
τEIM+1 ← arg supτ∈Σh

|τ(rM )|
– Normalize to obtain a new collateral reduced basis function.

qM+1 ← (τEIM+1(rM ))−1 · rM
return extended basis data: DM+1 ←

(
{qm}M+1

m=1 , {τEIm }M+1
m=1

)

that the maximum norms of the nodal base functions can grow exponentially and that
in the worst, but very unlikely case, the Lebesgue constant defined as

ΛM := sup
x∈Ω

M∑
m=1

|ξm(x)|. (2.2)

can reach its maximum of 2M − 1. The Lebesgue constant correlates to the maximum
ratio between the empirical interpolation of an operator evaluation and the opera-
tor evaluation’s best approximation in the collateral reduced basis space. Therefore,
an exponentially growing Lebesgue constant prevents the collateral reduced basis con-
structions from terminating as the targeted empirical interpolation error cannot be
reduced. Nevertheless, it is suggested practice to assess the quality of the collateral
reduced basis space by computing the growth of its Lebesgue constant.

Due to this expected growth of the Lebesgue constant, we use the basis QM in the
implementation, but keep ξM for simpler exposition in the following paragraphs.

Remark 2.2. We mention, that the loop over the training set Mtrain which is
necessary to find the worst approximation parameters in Algorithm 2.1 can be executed
in parallel with hardly any communication costs. Here, only the scalar results of X-
ErrorEstimate need to be communicated, such that the offline computation time
can be extremely improved by use of parallel hardware.
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Evaluation of interpolation functionals τEI
m ◦ Lh(t,µ). An efficient eval-

uation of the functionals τEIm (Lh(t,µ) [vh]) for every µ ∈ M, t ∈ [0, Tmax] and
vh ∈ {uh(µ)|µ ∈M} requires it to depend on few basis functions only. This fact
inspires the following definition.

Definition 2.3 (H-independent DOF dependence). A discrete operator Lh(t,µ) :
Wh → Wh fulfills an H-independent DOF dependence, if there exists a constant
C � H independent of H such that for all τ ∈ Σh a restriction operator RCτ :Wh →
Wh, vh =

∑H
i=1 τi(vh)ψi 7→

∑
j∈Iτ τj(vh)ψj exists that restricts the operator argument

to |Iτ | ≤ C degrees of freedom and the equation

τ (Lh(t,µ) [vh]) = τ
(
Lh(t,µ)

[
RCτ [vh]

])
still holds for all vh ∈ Wh.

Remark 2.4. In particular, finite element or finite volume operators fulfill the
H-independent DOF dependence, as a point evaluation of an operator application
only requires data of the argument on neighbouring grid cells together with geometric
information of this subgrid.

Assuming this H-independence condition for a parametrized discrete operator, its
empirical interpolant can be evaluated efficiently, i.e. independent of the dimension
H. This result is summarized in the following corollary.

Corollary 2.5. Let for each t ∈ [0, Tmax] and µ ∈ M the discrete operators
Lh(t,µ) : Wh → Wh fulfill the H-independent DOF dependence and let ΣM and
ξM be determined for this operator by Algorithm 2.1 with specifications defined by
Algorithm 2.2. Then, the empirical operator interpolation IM defined by

IM [Lh(t,µ)] [vh] :=

M∑
m=1

τEIm (Lh(t,µ) [vh]) ξm (2.4)

gives a separable approximation of Lh(t,µ) depending on at most CM degrees of
freedom for each evaluation.

Ignoring the parameter independent collateral basis functions, an evaluation of
the empirical interpolant has a complexity independent of the dimension H. This fact
holds during a reduced basis simulation, because then all contributions depending on
the collateral reduced basis have already been precomputed and reduced to vectors
or matrices with dimensions independent of H as explained in §3 and §4.

Evaluation of functionals for the Fréchet derivative DLh(t,µ)|uh [vh].
Many solvers for numerical approximations of nonlinear partial differential equations
use the Newton method to resolve the nonlinearities in the equation and therefore
depend on derivatives of discrete operators. It is easy to observe that the Fréchet
derivative can also be applied to the empirical interpolant of an operator Lh(t,µ) as

D (IM [Lh(t,µ)|uh ]) [·] =

M∑
m=1

D
(
τEIm ◦ Lh(t,µ)|uh

)
[·] ξm. (2.5)

For an efficient usage of such an interpolation in a reduced scheme, it suffices
to show that the functionals D

(
τEIm ◦ Lh(t,µ)|uh

)
can be evaluated efficiently: With

the chain rule for Fréchet derivatives and the existence of the derivatives w.r.t. the
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degrees of freedom, we obtain

D
(
τEIm ◦ Lh(t,µ)|uh

)
[vh] =

H∑
i=1

∂

∂ψi
τEIm (Lh(t,µ) [uh]) τi(vh) (2.6)

=
∑

i∈IτEIm

∂

∂ψi
τEIm (Lh(t,µ) [uh]) τi(vh). (2.7)

The reduction in the number of summands holds true, as substituting the DOF
τEIm (Lh(t,µ) [uh]) by its restriction τEIm

(
Lh(t,µ)

[
RCτmuh

])
shows that most of the

directional derivatives are zero. Each summand depends on one degree of freedom of
the directional function vh and at most C degrees of freedom of uh summing up to
an overall complexity of C2M � H. Again, this result with all its prerequisites is
summarized in the following corollary.

Corollary 2.6. Let the parametrized operators Lh(t,µ) be as in Corollary 2.5
having a Fréchet derivative at the point uh ∈ Wh. Then, the Fréchet derivative of the
empirical operator interpolation evaluated in direction vh ∈ Wh is a separable approx-
imation of DLh(t,µ)|uh [vh] with complexity independent of H for all t ∈ [0, Tmax]
and µ ∈ M if the derivatives ∂

∂ψi
τEIm (Lh(t,µ) [uh]) exist for all i = 1, . . . ,H and

m = 1, . . . ,M .
Remark 2.7. It is noteworthy, that the image ∪µ∈MIm (IM [Lh(µ)] [·]) is a

subset of the convex hull of the original operators image I := ∪µ∈MIm (Lh(µ) [·]).
Therefore, a property which applies to all functions of this convex hull conv(I) is pre-
served by the empirical operator interpolation. An example is the global conservation
property stating that discrete functions vh ∈ I have zero mean

∫
Ω
vh = 0. If such a

property holds on a local part of the underlying domain space Ω or a subset of the
parameter space M only, it can therefore be feasible to split the operator in two parts
such that for one the desired property holds and is preserved by its empirical inter-
polant. For the global conservation property of finite volume operators, this result is
discussed in Remark 3.4.

The results of this section allow us to show in §4.4 how the empirical opera-
tor interpolation is utilized for the offline/online decomposition of the reduced basis
scheme.

3. Evolution Scheme. In this section, we define an operator based numerical
scheme which can be understood as a general formulation for standard discretizations
of parametrized evolution problems (1.1). As an example, in §3.1 we present how these
operators can be specified for a finite volume scheme. Together with the empirical
interpolation for discrete operators and their Fréchet derivatives, a reduced scheme
will be formulated in §4.

In what follows, we assume a first order discretization in time, and split the space
discretization operator into implicit and explicit contributions. Both operator parts
may depend nonlinearly on the argument. The non-linear implicit part will be treated
by Newton iterations. For clarity of exposition, we fix the time step size, but of course,
it would be possible to choose it adaptively in each step.

Definition 3.1 (General parametrized evolution scheme). Let Wh be an H-

dimensional discrete function space with a basis {ψi}Hi=1 and tk := k∆t, k = 0, . . . ,K
be a sequence of K + 1 strictly increasing time instances with a global time step size
∆t > 0. Furthermore, there needs to exist a projection Ph : L2(Ω) → Wh onto
the discrete function space, and we assume an arbitrary space discretization oper-
ator Lh := LI + LE decomposed in its implicit and explicit contributions LI :=
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LI(tk,µ),LE := LE(tk,µ) : Wh → Wh. For each parameter µ ∈ M we define a

numerical scheme for discrete solutions ukh := ukh(µ) =
∑H
i=1 u

k
h,iψi ∈ Wh at time

instances tk for k = 0, . . . ,K by initial projection

u0
h = Ph [u0(µ)] , (3.1)

and subsequently solving the equations

F
[
uk+1
h

]
:= (Id + ∆tLI)

[
uk+1
h

]
− (Id−∆tLE)

[
ukh
]

= 0, (3.2)

with the Newton-Raphson method. In each Newton step, we solve for the defect
δk+1,ν+1
h in

DF |uk+1,ν
h

[
δk+1,ν+1
h

]
= −F

[
uk+1,ν
h

]
, (3.3)

where uk+1,0
h := ukh and uk+1,ν+1

h := uk+1,ν
h + δk+1,ν+1

h define the updates in each

Newton step, and the solution at time instance tk is given by uk+1
h := u

k+1,νkmax

h .
Here, the last Newton step index νkmax equals the smallest integer ν satisfying the
inequality ∥∥Rkh,New

∥∥
Wh
≤ εNew (3.4)

for the Newton residual

Rkh,New := uk+1
h − ukh + ∆t

(
LI
[
uk+1
h

]
+ LE

[
ukh
])

(3.5)

and a predefined residual error bound εNew > 0.
Note that, if LI is linear, a single Newton-step is sufficient and in case LI is zero,

we obtain a purely explicit scheme. As a special case, the Crank–Nicolson scheme of
second order is also covered.

3.1. Example: nonlinear finite volume scheme. As special instances of the
general evolution equation (1.1), we consider the following scalar nonlinear convection–
diffusion problem on a polygonal domain Ω ⊂ R2 with the abbreviation u = u(t;µ)
for a clearer exposition:

∂tu+∇ · (v(u;µ)u)−∇ · (d(u;µ)∇u) = 0 in Ω× [0, Tmax] (3.6)

with suitable parametrized functions v(·;µ) ∈ C(R,Rd) and d(·;µ) ∈ C(R,R+
0 )

u(0;µ) = u0(µ) in Ω× {0}, (3.7)

u(µ) = udir(µ) on Γdir × [0, Tmax], (3.8)

(v(u;µ)u− d(u;µ)∇u) · n = uneu(µ) on Γneu × [0, Tmax] (3.9)

and cyclical boundary conditions on the remaining boundary ∂Ω\(Γdir ∪Γneu). Here,
n denotes the outer normal on the boundary. Note, that we also allow d ≡ 0.

We denote W as the exact solution space with respect to the space variable that
can be chosen e.g. as L∞(Ω)∩BV (Ω) ⊂ L2(Ω). We obtain unique entropy solutions in
L∞(0, Tmax;W) if the data and boundary functions fulfill adequate regularity condi-
tions. For discussion on well-posedness, uniqueness and existence of entropy solutions,
see e.g. [3, 18].
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Numerical scheme. Before we formulate the numerical scheme, we must in-
troduce some notations. Let T := {ei}Hi=1 denote a numerical grid consisting of H

disjoint polygonal elements forming a partition of the domain Ω̄ =
⋃H
i=1 ēi. For each

element ei, i = 1, . . . ,H, we assume that there exist certain points xi lying inside the
element ei, such that points in adjacent elements are perpendicular to the correspond-
ing edges. The cell’s edges are denoted by eij with j ∈ Nin(i) ∪ Nneu(i) ∪ Ndir(i).
Here, the index set Nin(i) comprises cell indices of all elements adjacent to ei and
Nneu(i) and Ndir(i) are enumerations of edges on which a Neumann respectively a
Dirichlet condition is imposed. On each edge eij , we denote the barycenter by xij

Ω

Γdir

Γneu

xk

xi xj

eij/eji

eik

ei

xik

nij

Figure 3.1. Excerpt of a rectangular grid with notations used in this paper.

and the outer unit normal by nij .

The grid enables us to specify a discrete function space Wh := span {ψi}Hi=1

spanned by indicator functions ψi := χei piecewise constant on the grid cells. We
denote the degrees of freedom of a function uh ∈ Wh by uh,i = τi (uh) := uh(xi). For
the time interval discretization, we choose the global time step size ∆t small enough
such that a CFL condition is fulfilled for all parameters µ ∈M.

The implicit and explicit space discretization operator need to model the diffusive
respectively the convective dynamics of the underlying partial differential equations.
Therefore we define

LI(µ) := αLdiff(µ) + β Lconv(µ), (3.10)

LE(µ) := (1− α)Ldiff(µ) + (1− β)Lconv(µ) (3.11)

with constants 0 ≤ α, β ≤ 1 and finite volume operators Ldiff and Lconv specified be-
low. A judicious choice for the constants is α = 1 and β = 0, because the greater stiff-
ness of diffusion dynamics requires implicit discretizations, whereas for instationary
problems, it is computationally more efficient to discretize convection terms explicitly.
Note that the operators are constant in time, but the scheme applies to time–varying
operators as well.

The main idea of the finite volume method is to compute cell–wise averages over
the solutions and to substitute the occurring volume integrals containing divergence
terms into surface integrals with the Gauss–Ostrogradsky theorem, such that e.g.

∇ · ϕ ≈ 1

|ei|

∫
ei

∇ · ϕ =
1

|ei|

∫
∂ei

ϕ · n. (3.12)
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For the diffusion operator, a finite difference approximation of the normal deriva-
tive gives us the DOF-wise definition

(Ldiff(µ) [uh])i =− 1

|ei|
∑

j∈Nin(i)

d(uh;µ)ij
uh,j − uh,i
|xj − xi|

|eij |

− 1

|ei|
∑

j∈Ndir(i)

d(udir(xij ;µ);µ)
udir(xij ;µ)− uh,i

2|xij − xi|
|eij |,

(3.13)

where |ei| is the volume of the grid cell ei and d(uh;µ)ij computes a suitable mean on

the edge eij , e.g. based on the harmonic mean
2d(uj ;µ)d(ui;µ)
d(uj ;µ)+d(ui;µ) . In order to resolve the

nonlinearity of the diffusion in a numerical scheme with the Newton-Raphson method,
we also need the operator’s directional derivative at a point uh

(DLdiff(µ)|uh [vh])i =− 1

|ei|
∑

j∈Nin(i)

Dd(·;µ)ij |uh [vh]
uh,j − uh,i
|xj − xi|

|eij |

+ d(uh;µ)ij
vh,j − vh,i
|xj − xi|

|eij |

− 1

|ei|
∑

j∈Ndir(i)

d(udir(xij ;µ);µ)
−vh,i

2|xij − xi|
|eij |.

(3.14)

Likewise, we define the finite volume operator for the convection term by

(Lconv(µ) [uh])i =
1

|ei|
∑

j∈Nin(i)

gij(uh,i, uh,j ;µ)

+
1

|ei|
∑

j∈Ndir(i)

gij(uh,i, udir(xij);µ)

+
1

|ei|
∑

j∈Nneu(i)

∫
eij

uneu(µ)

(3.15)

with Engquist-Osher flux functions gij leading to low numerical viscosity in this
scheme. The flux functions can be expressed by setting cij(u;µ) := nijv(u;µ)u
for all edges, defining

c+ij(u;µ) := cij(0;µ) +

∫ u

0

max(c′ij(s;µ), 0)ds, (3.16)

c−ij(u;µ) :=

∫ u

0

min(c′ij(s;µ), 0)ds (3.17)

and choosing the flux as gij(u, v;µ) := |eij |
{
c+ij(u;µ) + c−ij(v;µ)

}
, cf. [19]. The corre-

sponding directional derivative w.r.t. vh of the Engquist-Osher flux operator is given
by

(DLconv(µ)|uh [vh])i =
1

|ei|
∑

j∈Nin(i)

∂1gij(uh,i, uh,j ;µ)vh,i + ∂2gij(uh,i, uh,j ;µ)vh,j

+
1

|ei|
∑

j∈Ndir(i)

∂1gij(uh,i, udir(xij ;µ))vh,i.

(3.18)
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In order to complete the scheme, we can project the initial data onto the discrete
function space via a cell averaging operator Ph : W → Wh, DOF-wise defined by
τi (Ph [vh]) := 1

|ei|
∫
ei
vh and obtain a specification of the generalized numerical scheme

from Definition 3.1.
Remark 3.2 (Restriction to interpolation DOFs). From the DOF-wise defini-

tions of the operators (3.13) and (3.15), it follows that a constant number of flops
dependent on the maximum number of cell neighbours suffices to numerically compute
a single degree of freedom from the operator evaluation result. Therefore, the finite
volume operators fulfill the H-independent DOF dependence condition and are suit-
able for empirical interpolation with the constant C bounded by one plus the maximum
number of edges of an element.

A crucial property of finite volume operators is its local conservation property
assuring that everything flowing out of a cell, flows into a neighbouring one. For an
arbitrary finite volume (update) operator in the flux formulation

(Lh [uh])i =
∑

j∈N (i)

gij(uh). (3.19)

the local conservation property holds, iff

gij(uh) = −gji(uh). (3.20)

In order to discuss that the conservation property is preserved by the empirical inter-
polant of a parametrized finite volume operator, we assume the EI-greedy algorithm
has selected the time step indices and parameters

{
(kEI1 ,µEI

1 ), . . . , (kEIM ,µEI
M )
}

for the
extension of the collateral reduced basis space, such that the basis functions are given
by

qm = cm

(
Lh
[
u
kEIm
h (µEIm )

]
− Im−1 [Lh]

[
u
kEIm
h (µEIm )

])
(3.21)

with normalization factors cm :=
(
(τEIm (rm−1))

)−1
(c.f. method EI-ExtendBasis

from Algorithm 2.2). The following lemma proves the preservation of the local con-
servation property.

Lemma 3.3. If for all µ ∈ M the parametrized finite volume operator Lh(µ) :
Wh → Wh has a locally conservative flux g(µ; ·), then the empirical interpolant
IM [Lh(µ)] can be evaluated by

(IM [Lh(µ)] [vh])i =
∑

j∈N (i)

gij(µ; vh) (3.22)

for all vh ∈ Wh with a parametrized flux gIM (µ; ·) recursively defined by

gIMij (µ; vh) := σM (vh)
(
gij

(
µEI
M ;u

kEIM
h (µEI

M )
)
− gIM−1

ij

(
µEI
M ;u

kEIM
h (µEI

M )
))

+ g
IM−1

ij (µ; vh)
(3.23)

for all M ∈ N>0 and gI0ij (µ; ·) := 0. It follows that this flux inherits the local conser-
vation property from g(µ; ·).

Proof. From equation (3.21), it follows by induction and with equation (3.19)
that

(qM )i = cM ·
∑

j∈N (i)

gij

(
µEIM ;u

kEIM
h (µEIM )

)
− gIM−1

ij

(
µEIM ;u

kEIM
h (µEIM )

)
. (3.24)
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Then, from IM [Lh(µ)] [vh] =
∑M
m=1 σ

M
m (vh)qm follows

(IM [Lh(µ)] [vh])i = σMM (vh) (qM )i +
∑

j∈N (i)

g
IM−1

ij (vh) (3.25)

and such, after substituting (3.24) into (3.25),

gIMij (vh) = −gIMji (vh) , (3.26)

because g(µ; ·) and gIM−1(µ; ·) are both conservative fluxes by assumption and by
induction, respectively. The sum of conservative fluxes stays conservative.

Remark 3.4 (Global conservation under empirical interpolation). As a corollary
from the previous lemma or from Remark 2.7, it follows that global conservation, i.e.∫

Ω

Lh[vh] = 0 for all vh ∈ Wh, (3.27)

is also preserved under empirical interpolation. In case of trivial boundary conditions,
the operators (3.13) and (3.15) are for all µ ∈M conservative in this sense. For non–
trivial boundary conditions, however, the operators can be split into one operator for
the fluxes over domain boundaries and one for the fluxes over inner grid cell interfaces
as described in Remark 2.7.

Note, that the interpolation procedure and the reduced scheme are identically
applicable to other evolution problems, discrete function spaces and discretization
operators, e.g. finite element or discontinuous Galerkin methods. Hence, for the fol-
lowing development of the reduced basis method, we will express the numerical scheme
in terms of the more general notions from Definition 3.1.

4. Reduced Basis Method. The key ingredient for a reduced basis scheme
is the availability of a suitable low dimensional reduced basis space Wred. In this
section, we give a short review of an algorithm for reduced basis generation. We refer
to the article [22] for a more detailed presentation on this topic. In the following
§4.3 and §4.4, we introduce a reduced basis scheme for the general evolution prob-
lem from Definition 3.1 and comment on its suitability for an efficient offline/online
decomposition.

In the experiments, we apply the POD-greedy reduced basis construction meth-
od as presented in [16] and a new more sophisticated alogorithm (PODEI-greedy)
extending the reduced basis and the collateral reduced basis spaces in a synchronised
way. Both algorithm are used with adaptive training parameter set extension intro-
duced in [13]. Different approaches that combine adaptive parameter selection with
the generation of multiple reduced basis spaces for different parameter sets have re-
cently been given in [8, 13]. Convergence rate statements haven been obtained for an
idealized version of the algorithm [12] as a theoretical foundation. All these meth-
ods are inherently accumulative and snapshot-based, like the collateral reduced basis
generation schemes described above. An initially small (or empty) basis is iteratively
enriched based on solutions ukih (µi) for certain time steps ki and parameters µi.

4.1. EI-greedy + POD-greedy basis generation. In order to generate a
suitable reduced basis space approximating the manifold of “interesting” solution
snapshots

{
ukh(µ) ∈ Wh|µ ∈M, k = 0, . . . ,K

}
, we start with a small initial reduced

basis and then perform the greedy search Algorithm 2.1 with the methods described
in Algorithm 4.1. This algorithm will be named POD-greedy in the following.
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Algorithm 4.1 Methods for the POD-greedy algorithm

POD-InitBasis()

return initial reduced basis functions: {ϕn}N0

n=1

POD-ErrorEstimate({ϕn}Nn=1 ,µ, t
k)

return error estimate: ηkN,M (µ) ≥
∥∥ukred(µ)− ukh(µ)

∥∥
Wh

POD-ExtendBasis({ϕn}Nn=1 ,µmax, t)

– Compute trajectory
{
ukh(µmax)

}K
k=0

.
– Compute new basis function with Galerkin projection Pred projecting

onto span {ϕn}Nn=1

ϕN+1 ← POD
({
ukh(µmax)− Pred

[
ukh(µmax)

]}K
k=0

)
return extended reduced basis: {ϕn}N+1

n=1

We assume that the quality of reduced simulation trajectories
{
ukred(µ)

}K
k=0

which
are obtained by the reduced numerical scheme introduced in §4.3, can be assessed by
a posteriori error bounds. These error estimates denoted by ηkN,M : M → R bound

the reduction error
∥∥ukred(µ)− ukh(µ)

∥∥
Wh

for every k = 0, . . . ,K and different dimen-

sions N and M of the reduced basis respectively the collateral reduced basis space.
Of course, it is also possible to use the exact error directly. However, a direct evalu-
ation of the error depends on a large number of inefficient computations. Therefore,
more efficient a posteriori estimators allowing to deal with a large number of train-
ing samples, are preferable. This is necessary in order to assure the reduced basis
approximation can be good enough for all parameters. An example for an error esti-
mator separable into parameter independent offline and efficient online computations
is given in §5.

For an extension step of the reduced basis space the entire solution trajectory{
ukh(µmax)

}K
k=0

to the worst approximated parameter µmax is considered. A proper
orthogonal decomposition (POD) on this trajectory’s projection error is applied and
only the dominant modes are used for the basis extension. In the extension algorithm
used for the experiments and presented in Algorithm 4.1, we are using only the single
most dominant mode.

The initialization of the reduced basis generation is usually realized by adding
initial data projections Ph [u0(µ)]. Assuming an affine parameter dependence of the
initial data function u0, it is possible to assure that these projections lie in the reduced
basis space when it includes all parameter independent contributions.

It is important to note, that error estimates computed by POD-ErrorEstimate()
include reduced computations which depend on the empirical interpolation of non-
linear operators. Therefore, the empirical interpolation bases must be computed with
Algorithms 2.1 + 2.2 for all discrete operators of the numerical scheme beforehand.
This approach has some drawbacks:

(i) The empirical interpolation bases are generated such that an artificial inter-
polation error is reduced for which it is not clear, how it relates to the error estimates
ηkN,M used in the POD-greedy algorithm. Therefore, it is impossible to determine
a priori the optimal correlation between the reduced basis space and the collateral
reduced basis space.

(ii) The empirical interpolation error estimation by EI-ErrorEstimate() de-
pends on high dimensional computations for each parameter and time step tested.
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This can be very inefficient for large parameter sets Mtrain.
(iii) In our experiments the reduced basis generation can be improved if the

training parameter set Mtrain is adapted during the basis generation. This allows to
begin with a small parameter set and to reduce the computation time for the basis
generation. The POD-greedy algorithm finds a good training parameters set, but
this set is unknown at the stage when the collateral reduced basis is generated.

4.2. PODEI-greedy basis generation. In this section we will introduce an-
other greedy algorithm for synchronised execution of “POD greedy and empirical
interpolation basis generation” (PODEI). This algorithm is again based on Algo-
rithm 2.1 but generates the reduced basis and the collateral reduced basis spaces in
parallel and overcomes the drawbacks of the subsequent execution of the algorithms
EI-greedy and POD-greedy. The methods for the PODEI-greedy algorithm
are sketched in Algorithm 4.2. A similar approach of a synchronized generation of
reduced basis spaces has recently been published in [24].

The proposed algorithm uses only the error estimates ηkN,M for a greedy search
in the parameter samples Mtrain ⊂ M and attempts to extend both reduced spaces
in each step. In previous applications of the empirical operator interpolation to non-
linear operators in reduced basis schemes [17, 7], it was observed that numerical
schemes become unstable if the accuracy of the empirical interpolation is too bad with
respect to the accuracy of the reduced basis space. In order to avoid this behaviour
during the basis generation, we discard newly computed reduced basis functions if
they increase the estimated error. This leads to an automatic control of the M -N
correlation between the dimensions of the two basis spaces. A similar idea for this au-
tomatic control of the two basis sizes is presented in [24] where so–called EIM plateaus
are identified on which the model reduction error is dominated by the projection error
made by the projection on the reduced basis space. On these EIM plateaus, a further
extension of empirical interpolation basis functions is useless.

It is noteworthy, that the initial collateral basis is generated by a full EI-greedy
algorithm generating a small initial basis on a coarser parameter sampling setMcoarse

train .

4.3. Reduced Basis Scheme. In this section we introduce a reduced basis
scheme based on the formulation in [17, 15] for explicit discretizations of evolution
problems. We extend the scheme by allowing nonlinear or non-separable implicit
operator contributions. The basic idea for the reduced basis scheme is to replace
the discrete evolution operators LE and LI from Definition 3.1 by their empirical
interpolants IM [LE ] and IM [LI ] and applying an orthogonal projection of the nu-
merical scheme onto the reduced basis spaceWred with respect to the scalar product of
Wh. For this purpose, we introduce the corresponding orthogonal projection operator
Pred :Wh →Wred satisfying

〈Pred [u] , ϕ〉 = 〈u, ϕ〉 ∀ϕ ∈ Wred

and define reduced variants of the discrete operators

Lred,E := Pred ◦ IM ◦ LE and Lred,I := Pred ◦ IM ◦ LI . (4.1)

For all µ ∈M we obtain trajectories
{
ukred(µ)

}K
k=0

with snapshots ukred(µ) ∈ Wred

for k = 0, . . . ,K analogously to the evolution scheme described in Definition 3.1. The
reduced initial data is given by projection of the initial data

u0
red := u0

red(µ) = Pred [Ph [u0(µ)]] . (4.2)
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Algorithm 4.2 Methods for the PODEI-greedy algorithm

PODEI-InitBasis()
– Generate small empirical interpolation basis:

(QMsmall
,ΣMsmall

)← EI-greedy(Mcoarse
train , εtol,small,Msmall)

– Compute initial reduced basis:
{ϕn}N0

n=0 ← POD-InitBasis()

return initial bases data: D1 ← {ϕn}N0

n=1 ∪ (QMsmall
,ΣMsmall

)

PODEI-ErrorEstimate(DΥ,µ, t
k)

return reduced basis error estimate: ηkN,M (µ)

PODEI-ExtendBasis(DΥ,µmax, t
k)

Reduced data DΥ comprises DRB
N := {ϕn}Nn=1 and DEI

M := (QM ,ΣM )
– Extend EI basis: DEI

M+1 ← EI-ExtendBasis(DEI
M ,µmax, t

k)

– Extend RB basis: DRB
N+1 ← POD-ExtendBasis(DRB

N ,µmax, t
k)

– Discard extended RB if error increases:
if ηkN−1,M−1(µmax) ≤ max(µ,t)∈Mtrain

ηkN,M (µ) then

return extended basis data: DΥ+1 ← (DRB
N ,DEI

M+1)
else

return extended basis data: DΥ+1 ← (DRB
N+1,DEI

M+1)
end if

Then, for each k = 0, . . . ,K − 1 Newton step solutions are computed by finding for
ν = 0, . . . , νkmax(µ) defects δk+1,ν

red := δk+1,ν
red (µ) solving

(
Id + ∆tDLred,I

∣∣
uk+1,ν
red

) [
δk+1,ν+1
red

]
= −uk+1,ν

red + ukred (4.3)

−∆t
[
Lred,I

[
uk+1,ν

red

]
+ Lred,E

[
ukred

]]
,

with uk+1,0
red := ukred, uk+1,ν+1

red := uk+1,ν
red + δk+1,ν+1

red for ν = 1, . . . , νkmax− 1, and finally
assigning the reduced solution for the next time step by

uk+1
red := u

k+1,νkmax

red . (4.4)

Here, the final Newton iteration index νkmax is the smallest integer such that the norm
of the residual defined as

Rkred,New := uk+1
red − ukred + ∆t

(
Lred,I

[
uk+1

red

]
+ Lred,E

[
ukred

])
(4.5)

drops below a given tolerance εNew.

Remark 4.1. If LI is linear, a single Newton-step is sufficient. If LI is zero, no
Newton step at all is necessary and the numerical scheme is purely explicit. This case
has already been discussed in [17]. Non-linear parabolic problems with finite element
discretizations are also discussed in [11, 2] and [10]. Similar to the empirical operator
interpolation based approach presented in this paper, those reduced basis methods make
use of an empirical interpolation applied to specific data functions. In this case, the
interpolation functionals {τEIm }Mm=1 also define point evaluations at “magic points”
for which the “H-independent DOF dependence” is trivially fulfilled with C = 1.



16 M. DROHMANN, B.HAASDONK AND M.OHLBERGER

For easier analysis of the computational complexity during offline and online
phase, we translate the above sketched reduced scheme into a vector-valued formula-
tion based on the few degrees of freedom of the reduced solution.

Definition 4.2 (Reduced basis scheme with empirical operator interpolation).
We assume a numerical scheme from Definition 3.1 with operators LE and LI fulfill-
ing an H-independent DOF dependence. Hence, we can assume that an appropriate
empirical interpolation operator IM is defined by means of an empirical interpolation

basis ξM and an enumerated subset of degrees of freedom ΣM :=
{
τEIm

}M
m=1

⊂ Σh.
The collateral reduced basis space shall be the same for both the operators LE and
LI (c.f. Remark 4.3). Furthermore, there must be an orthonormal reduced basis

ΦN := {ϕn}Nn=1 available that spans the reduced basis space Wred.

We define the following scheme for sequentially expressing

(i) the reduced solution ukred(µ) :=
∑N
n=1 a

k
n(µ)ϕn,

(ii) intermediate Newton step solutions uk,νred(µ) :=
∑N
n=1 a

k,ν
n (µ)ϕn and

(iii) Newton step defects δk,νred(µ) :=
∑N
n=1 d

k,ν
n (µ)ϕn

by computing the coefficient vectors

ak := ak(µ) =
(
ak1(µ), . . . , akN (µ)

)T
, ak,ν := ak,ν(µ) =

(
ak,ν1 (µ), . . . , ak,νN (µ)

)T
and dk,ν := dk,ν(µ) =

(
dk,ν1 (µ), . . . , dk,νN (µ)

)T
for k = 0, . . . ,K and ν = 0, . . . , νkmax(µ):

The initial solution vector is obtained by projection onto the reduced basis space

a0 := ((Pred [Ph[u0(µ)], ϕ1]) , . . . , (Pred [Ph[u0(µ)], ϕN ]))
T
. (4.6)

Then, for each time index k = 0, . . . ,K − 1 we compute Newton iterations by finding
defects dk+1,ν+1 and residuals rk+1,ν+1 solving for ν = 0, . . . , νkmax(µ)−1 the equations

(
Id + ∆tCl′I(t

k;µ)
[
ak+1,ν

]) [
dk+1,ν+1

]
= −ak+1,ν + ak+1,0

−∆tC
(
lI(t

k;µ)
[
ak+1,ν

]
+ lE(tk;µ)

[
ak+1,0

])
,

(4.7)

rk+1,ν+1(µ) := ak+1,ν+1 − ak+1,0

+ ∆tC
(
lI(t

k;µ)
[
ak+1,ν+1

]
+ lE(tk;µ)

[
ak+1,0

]) (4.8)

with updates

ak+1,0 := ak,

ak+1,ν+1 := ak+1,ν + dk+1,ν+1,

ak+1 := ak+1,νkmax(µ).

(4.9)

The number of Newton steps νkmax(µ) at each time step is chosen as the smallest
integer ν such that the residual norm drops below the specified tolerance for the Newton

scheme, i.e. for which
((

rk+1,ν+1(µ)
)T

Mrk+1,ν+1(µ)
) 1

2

< εNew holds.
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The utilized vectors and matrices are defined as

(M)nn′ := 〈ϕn, ϕn′〉 = δnn′ , (4.10)

(C)nm := 〈ξm, ϕn〉 , (4.11)(
l′I
(
tk,µ

) [
ak+1,ν

])
mn

:=

H∑
i=1

∂

∂ψi

(
τEIm ◦ LI(tk,µ)

) [
uk+1,ν

red

]
τi (ϕn) , (4.12)

(
lI
(
tk,µ

) [
ak+1,ν

])
m

:= τEIm

(
LI(tk,µ)

[
uk+1,ν+1

red

])
, (4.13)(

lE
(
tk,µ

) [
ak
])
m

:= τEIm
(
LE(tk,µ)

[
ukred

])
(4.14)

for n, n′ = 1, . . . , N and m = 1, . . . ,M .
Remark 4.3. In the reduced basis scheme, we only use one collateral reduced

basis space and one set of interpolation DOFs for both the operators LE and LI . This
is a feasible choice, whenever the operators implement similar “dynamics”. Separate
reduced basis spaces would include large redundancies in such scenarios. For a single
collateral reduced basis, the EI-ErrorEstimate method simply returns the maximum
interpolation error of operator evaluations for both operators.

4.4. Offline/Online Decomposition. We now show that the reduced scheme
from Definition 4.2 allows a full offline/online decomposition by summarizing the
computed data fields and their theoretical complexity and size. The ability to pre-
compute high-dimensional data in a single offline phase, is the key for efficient and
fast online simulations.

The high-dimensional output during basis generation consists of
(i) the collateral reduced basis functions {ξm}Mm=1 ⊂ Wh, corresponding inter-

polation DOFs ΣM and the global index set IM :=
⋃ {Iτ |τ ∈ ΣM} for all operators

subject to an empirical interpolation procedure, and
(ii) the reduced basis functions {ϕn}Nn=1 ⊂ Wh.

For clarity of exposition, we describe the generated data only for one empirical inter-
polated operator Lh. This is correct for schemes with purely implicit (Lh ≡ LI) or
purely explicit operator (Lh ≡ LE) contributions, but can easily be extended to more
complex situations. Before we proceed to reduced simulations, the high-dimensional
data must be processed. Assuming that the initial data function is in a separable
form, i.e.

u0(µ) =

Q∑
q=1

σq0(µ)uq0 (4.15)

with parameter dependent coefficient functions σq0 : M → R and parameter inde-
pendent functions uq0 ∈ Wh for q = 1, . . . , Q, the parameter independent projections
Pred [Ph [uq0]] can be pre-computed with the already known reduced basis functions.
In case of non–separable initial data, the initial data function can also be included
into the collateral reduced basis generation process and be treated analogously to the
discretization operators. Efficient evaluations of the operator during the online phase,
depend on

(i) restrictions of the reduced basis functions to {RM [ϕn]}Nn=1 with a restriction
operator

RM :Wh →Wh, uh =

H∑
i=1

τi (uh)ψi 7→
∑
i∈IM

τi (uh)ψi (4.16)
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and
(ii) the gram matrix C from (4.11), whose entries Cnm = 〈ξm, ϕn〉 depend

on the nodal collateral reduced basis functions {ξm}Mm=1 that need to be generated

from the functions {qm}Mm=1 in a further pre-processing step. Note that this “basis
transformation” is very efficient because of the special form of the collateral reduced
basis (c.f. Remark 2.1).

Remark 4.4. In practice, discretization operators, like finite volume or finite
element discretization operators are usually grid-based and the degrees of freedom cor-
respond to distinctive points on the grid cells or its interfaces. In such case, a subgrid
Sh ⊂ Th ⊂ Ω as illustrated in Figure 4.1), might be necessary in order to compute the
local operator evaluations and the restriction operator efficiently without an otherwise
needed full grid traversal.

local subgrid
xm

Restrict uh to subgrid

xm

Evaluate τEIm (Lh(µ) [uh])

Figure 4.1. Illustration of finite volume operator evaluation on a local subgrid

With the restricted reduced basis functions the local operator evaluations

(
τEIm ◦ Lh(tk,µ)

) [ N∑
n=1

anϕn

]
=
(
τEIm ◦ Lh(tk,µ)

) [ N∑
n=1

anRM [ϕn]

]
(4.17)

have a complexity of O(N |IM |) = O(NM) for all m = 1, . . . ,M . This result can be
applied to equations (4.13)-(4.14) and we see, that each of them lies in the complexity
class O(NM2). The generation of the Jacobian from equation (4.12) depends on
O(N2M2) flops. This outreaches all other computations for the assembling of reduced
matrices and vectors including matrix-matrix-multiplication of the reduced Jacobian
with C consuming O(N2M) flops. Therefore, one Newton step (4.7) of the reduced
scheme has complexity O(N2M2 + N3) including the costs for the linear equation
solver. The computation of the Newton residual has costs O(NM2). Unlike in the
detailed simulation steps, the left hand side matrix in the linear equation system is not
sparse. Because N is very small compared to the dimension of the detailed numerical
scheme, we still expect the solution of the equation system to be much faster. We
summarize that the reduced scheme is independent of the high dimensional data size
H for each parameter after the offline-phase. A detailed comparison between costs
for detailed and reduced simulations is given in Table 4.4.

5. A posteriori error estimation. Rigorous a posteriori error estimators can
be derived for the error between the reduced and detailed simulation. For a simple
estimator with pure explicit discretization, we refer to [17]. Here, we derive a more
accurate estimator which includes implicit discretization and residuals from Newton
steps. It is assumed that a higher order empirical interpolation of the used operators
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detailed simulation reduced simulation

Initial data projection Eqn. (3.1): O(H) Eqn. (4.6): O(QN)
Assembling of LHS and
RHS in Newton step

Eqn. (3.3): O(H) Eqn. (4.7): O(N2M2)

Solving Newton step Eqn. (3.3): depending on
linear solver, approximately
O(H2)

Eqn. (4.7): O(N3)

Computing residual Eqn. (3.5): O(H) Eqn. (4.8): O(NM2)
Table 4.1

Comparison of theoretical run–time complexities between detailed and reduced simulations.

is exact. Note, that this assumption is always fulfilled for M + M ′ = H but for
efficiency reasons in practice a much smaller value for M ′ needs to be used.

Theorem 5.1. Let
{
ukh(µ)

}K
k=0

and
{
ukred(µ)

}K
k=0

be solution trajectories ob-
tained via the evolution schemes from Definitions 3.1 and 4.2 where the initial projec-
tion onto the reduced basis space is exact, i.e. u0

h(µ) ∈ Wred for all µ ∈M. Further,
we make two assumptions on the discretization operators Id + ∆tLI and Id−∆tLE.
Firstly, the operators need to fulfill a lower respectively an upper Lipschitz continu-
ity condition such that there exist constants CI , CE > 0, and for all u, v ∈ Wh the
inequalities

‖u− v + ∆tLI [u]−∆tLI [v]‖Wh
≥ 1

CI
‖u− v‖Wh

(5.1)

‖u− v −∆tLE [u] + ∆tLE [v]‖Wh
≤ CE ‖u− v‖Wh

(5.2)

hold. Secondly, we assume the exactness of the empirical interpolation of the operators
for a certain number of collateral reduced basis functions, i.e. there exists a positive
integer M ′ > 0, such that

IM+M ′ [LI ]
[
ukred(µ)

]
= LI

[
ukred(µ)

]
and (5.3)

IM+M ′ [LE ]
[
ukred(µ)

]
= LE

[
ukred(µ)

]
(5.4)

for all k = 0, . . . ,K and µ ∈M.
Then, the norm of the error ek(µ) := ukh(µ) − ukred(µ) can be bounded for k =

0, . . . ,K by ηkN,M,M ′(µ) which is an efficiently computable function defined by∥∥ek(µ)
∥∥
Wh
≤ ηkN,M,M ′(µ) :=

k−1∑
i=0

Ck−i+1
I Ck−iE

∥∥∥∥∥∥
M+M ′∑
m=M+1

∆tθi+1
m (µ)ξm

∥∥∥∥∥∥
Wh

+ εNew +
∥∥∆tRi+1(µ)

∥∥
Wh

 (5.5)

with a residual for the error due to the projection on the reduced basis space

∆tRk+1(µ) := (Id + ∆tIM [LI ])
[
uk+1

red (µ)
]
− (Id−∆tIM [LE ])

[
ukred(µ)

]
(5.6)

and empirical interpolation coefficients θk(µ) :=
{
θkm(µ)

}M+M ′

m=1
defined by

θkm(µ) := τEIm
(
LI
[
ukred(µ)

]
+ LE

[
uk−1

red (µ)
])
. (5.7)
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Proof. For clarity of the exposition, we will discard all parameters µ in this proof.
First, we check that the residual norm

∥∥∆tRk
∥∥
Wh

can be computed efficiently, because

with Definitions (5.6), (4.10)-(4.14) and the empirical interpolation gram matrix X
defined by

(X)mm′ := 〈ξm, ξm′〉 (5.8)

it follows that

∆t2
∥∥Rk+1

∥∥2

Wh
=
〈
∆tRk+1,∆tRk+1

〉
=
(
ak+1 − ak

)T
M
(
ak+1 − ak

)T
+ 2∆t

(
lI
[
ak+1

]
+ lE

[
ak
])T

C
(
ak+1 − ak

)
+ ∆t2

(
lI
[
ak+1

]
+ lE

[
ak
])T

X
(
lI
[
ak+1

]
+ lE

[
ak
])
.

Let us now derive the error bound. After each Newton iteration in the detailed
numerical scheme, we obtain the equation

(Id + ∆tLI)
[
uk+1
h

]
= (Id−∆tLE)

[
ukh
]

+Rkh,New (5.9)

with Newton residual
∥∥∥Rkh,New

∥∥∥
Wh

≤ εNew.

The same can be obtained with (5.6) for solutions of the reduced numerical scheme

(Id + ∆tIM [LI ])
[
uk+1

red

]
= (Id−∆tIM [LE ])

[
ukred

]
+ ∆tRk+1. (5.10)

Subtracting (5.9) from (5.10) leads to

(Id + ∆tLI)
[
uk+1
h

]
− (Id + ∆tIM [LI ])

[
uk+1

red

]︸ ︷︷ ︸
=:(I)

= (Id−∆tLE)
[
ukh
]
− (Id−∆tIM [LE ])

[
ukred

]︸ ︷︷ ︸
=:(II)

+Rk+1
h,New −∆tRk+1.

(5.11)

After adding zeros to each of (I) and (II), these can be decomposed into terms that
can (a) be estimated with the Lipschitz conditions and are (b) efficiently computable
terms, only depending on low dimensional data

(I) = (Id + ∆tLI)
[
uk+1
h

]
− (Id + ∆tLI)

[
uk+1

red

]︸ ︷︷ ︸
=:(Ia)

+ (Id + ∆tLI)
[
uk+1

red

]
− (Id + ∆tIM [LI ])

[
uk+1

red

]
,︸ ︷︷ ︸

=:(Ib)

(5.12)

(II) = (Id−∆tLE)
[
ukh
]
− (Id−∆tLE)

[
ukred

]︸ ︷︷ ︸
=:(IIa)

+ (Id−∆tLE)
[
ukred

]
− (Id−∆tIM [LE ])

[
ukred

]︸ ︷︷ ︸
=:(IIb)

.
(5.13)
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Thereby, we have split the error propagation from the error at a previous time step
(Ia), (IIa) from the error contribution through the empirical interpolation of the ex-
plicit and implicit discretization operators (Ib), (IIb). Substituting the previous equa-
tions into (5.11), bringing (Ib) on the right hand side and applying the Lipschitz
condition (5.1) on it we obtain a bound for the error

∥∥ek+1
∥∥
Wh

by∥∥ek+1
∥∥
Wh
≤ CI

∥∥(Id + ∆tLI)
[
uk+1
h

]
− (Id + ∆tLI)

[
uk+1

red

]∥∥
Wh

= CI

∥∥∥∥ (Id + ∆tIM [LI ])
[
uk+1

red

]
− (Id + ∆tLI)

[
uk+1

red

]
+ (Id−∆tLE)

[
ukh
]
− (Id−∆tLE)

[
ukred

]
+ (Id−∆tLE)

[
ukred

]
− (Id−∆tIM [LE ])

[
ukred

]
+Rk+1

h,New −∆tRk+1

∥∥∥∥
Wh

≤ CI

∥∥∥∥∥∥
M+M ′∑
m=M+1

∆tθk+1
m ξm

∥∥∥∥∥∥
Wh

+ CE
∥∥ek∥∥Wh

+ εNew +
∥∥∆tRk+1

∥∥
Wh

 ,

(5.14)
where the last inequality uses the Lipschitz continuity (5.2) of LE, the exactness as-
sumptions (5.3) and (5.4) on (Ib) respectively (IIb), the boundedness of the Newton
residuals and the definition of the empirical interpolation coefficients. Resolving the
recursion in (5.14) with initial error

∥∥e0
∥∥
Wh

= 0 results in the proposed error bound.

Remark 5.2. The Newton iteration error bound εNew grows with the number of
time instances. This is not a problem as the bound can be chosen arbitrarily small.
However, for problems with exponential error growth in time (CI > 1) it is reasonable
to weigh the bound with the time steps size ∆t.

The error estimator (5.5) is similiar to the estimator from [21] for a finite element
discretization of the viscous Burgers equation. There, it is proposed to adapt the op-
erator constants CE and CI for each parameter by the so-called successive constraints
method. This idea can also be transferred to the above described error estimator
allowing for better effectivity bounds. A tight bound, especially for the implicit con-
stant CI is of great importance. If the bound is greater than one, the error estimator
grows exponentially. Otherwise, it even ceases over time because individual snapshots
can better approximate the detailed simulation because of the increasing smoothness
of the solutions over time caused by diffusion.

It is obvious, that the error estimator respects an offline/online decomposition.
A preliminary for the separation is the construction of a bigger collateral reduced
basis ξM+M ′ , but in the experimental section, we will observe that only few extra
basis functions are needed for reasonable results. The evaluation of the estimator
only includes low-dimensional terms or evaluations of the empirically interpolated
operators lI and lE . For a detailed discussion on the efficient evalution of these
quantities, we refer to §4.4.

6. Experiments. In this section, we demonstrate experiments for the presented
reduced basis scheme. We consider two model examples that both fit into the setting
of example (3.6)-(3.9). The first one is a Burgers problem with a purely implicit dis-
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t=0.0 t=0.15 t=0.3(a)

t=0.0 t=0.15 t=0.3(b)

t=0.0 t=0.15 t=0.3(c)
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1

Figure 6.1. Illustration of transport for smooth data. Snapshots at different time instants for
(a) µ1 = 1 and (b) µ1 = 1.5 and (c) µ1 = 2.

cretization. Preliminary results on this example without the new a posteriori error
estimator and with explicit discretization have been presented in [15]. The second
problem is based on a nonlinear non-stationary diffusion equation also with a purely
implicit discretization. Both problems are nonlinear, but degenerate into linear ones
for specific parameter configurations. The second example is also used for an eval-
uation of the a posteriori error estimator with special focus on its effectivity. The
implementation is based on our MATLAB software package RBmatlab [26, 6].

6.1. Burgers equation. In a first example, we demonstrate the applicability to
a nonlinear convection problem

∂tu−∇ · f(u) = 0 (6.1)

with smooth initial data and a single parameter.
We choose Ω = [0, 2] × [0, 1] with purely cyclical boundary conditions and fix

the end time T = 0.3. We choose the nonlinear flux function f(u;µ) := vuµ1 with
exponent µ1 and space– and time–constant velocity field v = (1, 1)T , the initial data is
a smooth function u0(x) = 1

2 (1 + sin(2πx1) sin(2πx2)) for x = (x1, x2)T ∈ Ω. Overall,
we consider the single parameter µ = (µ1) ∈ M := [1, 2] for the exponent in the flux
of the evolution equation. We choose a 120×60 grid for decomposing Ω and K = 100
time–steps which satisfies the CFL-condition.

For this model setting, reduced basis spaces are generated with (A) a subsequent
execution of EI-greedy and POD-greedy algorithms and (B) the PODEI-greedy
algorithm. In the first case, the collateral reduced basis space is extended to its
maximum size, i.e. until the reduction of the interpolation error stagnates due to
machine precision and numerical constraints.

Figure 6.1 illustrates the time evolution of the solutions for different parameters, in
particular the initial data which is independent of the parameter µ1 and the final state
for µ1 = 1 respectively µ1 = 2. The transition between linear convection (µ1 = 1)
and the nonlinear non-viscous Burgers equation (µ1 = 2), can nicely be observed. In
the latter case shock discontinuities emerge over time.

Offline phase. The reduced spaces are generated by (A) subsequent execution
of the EI-greedy and POD-greedy algorithms and (B) the PODEI-greedy al-
gorithm. All computations are taken on the PALMA cluster of the university of
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Münster using 24 cores each running at 2.67 GHz. The implementation of the algo-
rithms makes use of the simple parallelization technique mentioned in Remark 2.2.
For the POD-greedy and the PODEI-greedy algorithms, we also apply the adap-
tation technique described in [14, 13], i.e. we begin with an initial uniform parameter
set M0

train ⊂ M and refine this set, every time the maximum of the error estimates
over this set becomes small with respect to a randomly chosen validation set. In the
experiments, we aim to assure a ratio of 1.1 between the maximum training set error
and the validation set error. The initial parameter sampling set M0

train for all three
greedy algorithms consists of 26 uniformly distributed parameters in the parameter
space interval [1, 2].

In case (A) the generation of the collateral reduced basis with the EI-greedy
algorithm takes 36 minutes and terminates with M = 499 basis functions after the
tolerance of 10−10 for the interpolation error has been reached. The computation
of the detailed simulations for all parameters takes only 100 seconds because of par-
allelization of these computations. The POD-greedy algorithm terminates after a
bit less than 3 hours and produces a reduced basis space of dimension Nmax = 249.
Note, that the main part of the offline run–time costs, namely the search for new basis
functions, depends linearly on the number of available cores and therefore, the offline
time can be controlled by using more processors. It is noteworthy, that the collateral
reduced basis space is generated much faster than the reduced basis space. This is
firstly because of the expensive POD step that needs to be computed in every POD-
greedy extension step, and secondly, because the empirical interpolation errors are
computed very fast after all necessary operator evaluations of detailed simulations
have been cached.

In case (B) the initial collateral reduced basis is generated based on the coarse
training sample Mcoarse

train = {1, 2}, and stops after three minutes with Msmall = 20
generated basis functions. As the PODEI-greedy algorithm starts with a very
small initial collateral reduced basis, the total offline time is smaller than in case (A)
— especially for small reduced basis space dimensions. (c.f. Table 6.1) The algorithm
stops after 3.27 hours. In both cases, the initial training sets M0

train are not refined.

Next, we analyze the quality of the model order reduction induced by the reduced
basis spaces. Figure 6.2(a) shows the growth of the Lebesgue constant defined in 2.2
with respect to the increasing collateral reduced basis size M . It can be clearly seen,
that the increase is linear with a maximum Lebesgue value of 182. Figure 6.2(b) helps
to understand how the empirical interpolation algorithm works. It illustrates the cell
midpoints corresponding to the selected interpolation DOFs ΣM and visualizes the
selection order of the empirical interpolation algorithm by plotting points selected
earlier in darker shades. It is visually comprehensible from the illustration that the
algorithm realizes an obvious space compression, because it recognizes the space sym-
metry of the solution, such that the selected cell midpoints are all located in the
lower left quarter of the domain. This means that interpolation DOFs for equivalent
solution positions are weighted equally.

Online phase. In order to get a notion of the reduced simulations accuracy,
in Figure 6.3 we illustrate the error convergence for the resulting reduced simula-
tion scheme. We select a set Mtest ⊂ M of 100 random values for µ not used
during basis generation and determine the maximum error maxµ∈Mtest

||ured(µ) −
uh(µ)||L∞([0,T ];Wh) between the reduced and the detailed simulations for different
dimensionalities N and M . The resulting maximum error is plotted in logarithmic
scale. The right hand side figure nicely shows, how a simultaneous increase of N and
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Figure 6.2. Illustration of (a) growth of Lebesgue constant and (b) interpolation DOF selection
for Burgers problem. DOFs corresponding to darker points are selected first.
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Figure 6.3. Illustration of reduced basis error convergence for continuous initial data with
varying dimensionalities N and M . The right hand side figure plots the error for simultaneously
increased bases sizes N and M for the “optimal” ratio derived from the landscape and the error
curve derived from the PODEI-greedy algorithm (dashed line).

M reveals almost exponential convergence along a selected diagonal of the plot. This
simultaneous increase is important: If M is fixed at a low value, increase of N over a
certain limit can give an error increase induced by incorrectly approximated operator
evaluations. If N is fixed, raising M gives no error improvement at some point.

The main goal of RB-methods is an accurate approximation under largely reduced
simulation time. To assess these computation times, we determine the detailed and
reduced simulation times over a sample of 100 random parameters and report the
average run-times. These efficiency results are summarized in Tables 6.1(A)+(B) for
different reduced basis sizes and for (A) subsequent generation of reduced basis and
collateral reduced basis space and (B) the synchronised generation of both using the
PODEI-greedy algorithm. In the first case the ratio between the dimensions for
the empirical interpolation and the reduced basis are determined from the maximum
basis sizes 499/249 ≈ 2 at which the algorithms stopped. Note, that this ratio cannot
be assumed to be a good choice for smaller basis dimensions. In contrast, the M–
N correlations in the second table are taken as inferred from the PODEI-greedy
algorithm which sequentially expands both reduced basis spaces. It can be nicely
observed, that this approach leads to better ratios, i.e. reaches smaller maximum
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N M ø-run–time[s] max. error offline time[h]

H = 7200 − 90.01 0.00 0
42 83 4.42 1.15 · 10−3 0.96
83 166 6.23 6.03 · 10−5 1.34
125 250 8.99 7.43 · 10−6 1.74
166 333 11.6 8.33 · 10−7 2.23
208 416 15.64 2.47 · 10−7 2.78
249 499 19.56 2.38 · 10−7 3.4

(B
)
P
O
D
E
I-
g
r
e
e
d
y N M ø-run–time[s] max. error offline time[h]

H = 7200 − 90.01 0.00 0
42 72 4.44 1.73 · 10−3 0.54
83 144 6.04 5.74 · 10−5 1.09
125 216 8.37 7.30 · 10−6 1.55
167 288 11.92 7.63 · 10−7 2.08
208 360 15.08 2.31 · 10−7 2.69
233 402 16.48 1.55 · 10−7 3.27

Table 6.1
Run–time comparison for detailed simulation with reduced simulations of varying reduced di-

mensionalities. The average run–times and maximum errors are obtained over a test sampleMtest ⊂
Mof size 100. The maximum error is obtained as max(µ,k)∈Mtest×[0,...,K]

∥∥ukh(µ)− ukred(µ)
∥∥
Wh in-

volving high dimensional error computations.

errors with smaller basis spaces and therefore faster reduced simulation times. An
exceptions is the second row of the tables with small dimensions (N,M) = (42, 72).
For reduced simulations with small reduced basis spaces, the PODEI-greedy suffers
from the bad initial collateral reduced basis which needs a few extension steps to
stabilize.

In general, however, the PODEI-greedy algorithm finds a very good choice
for the M–N correlation. This observations is emphasized by the right hand side
plot of Figure 6.3 comparing the maximum error decrease of the PODEI-greedy
with an “optimal” error decrease curve manually derived from the neighbouring error
landscape plot.

It can be seen nicely, that we obtain acceleration factors of 4.7−20 depending on
the dimensionalities of the reduced simulation. The acceleration factors obtained by
the two different basis generation methods hardly differ.

6.2. Porous Medium Equation. In this section, we consider the porous medium
equation given by the nonlinear diffusion problem

∂tu−m∆uµ1 = 0 in Ω× [0, Tmax], (6.2)

u = c0 + u0 on ∂Ω× [0, Tmax], (6.3)

u(·, 0) = c0 + u0 on Ω× {0} , (6.4)

on a rectangular domain Ω = [0, 1]2. The end time is fixed at Tmax = 1.0. The initial
data function u0 is a field of symmetrically arranged bar shaped concentrations illus-
trated in Figure 6.4(a). This gives us a non-smooth initial concentration depending
on the initial parameter c0.

The parameter vector is chosen as µ = (µ1,m, c0) ∈M := [1, 5]×[0, 0.01]×[0, 0.2]
such that for µ1 = 2 we get the isothermal porous medium equation and for µ1 > 2
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Figure 6.4. Plot (a) depicts a color shading of the initial data. Below, isolines of reduced
solutions are given at time instances t = 0.1 and t = 1.0 for different parameter vectors: (b) µ =
(1, 0.01, 0.2), (c) µ = (2, 0.01, 0.2), (d) µ = (4, 0.01, 0.2), (e) µ = (1, 0.01, 0.0) , (f) µ = (2, 0.01, 0.0)
and (g) µ = (4, 0.01, 0.0).

a porous medium equation with adiabatic flow. For µ1 = 1 it degenerates into the
linear heat equation. Note also, that for c0 close to zero, diffusion outside the bars is
turned off in the non–linear case (µ1 > 1).

This effect can be observed in Figure 6.4(f)+(g) showing large diffusion effects
inside the bars with high concentration after short time periods already, but almost
none outside. Furthermore, Figure 6.4 clearly illustrates the nonlinear effects, as the
diffusion is larger (more contour lines) in the bars with high initial concentration.
An exception, of course, are the reduced solutions in the upper row modelling linear
diffusion where the diffusivity stays the same globally. For the discretization, we
chose again the finite volume scheme from §3.1 on a 100× 100 grid for decomposing
Ω and K = 80 time steps. The diffusivity is discretized implicitly, such that its
nonlinearities are to be resolved with the Newton-Raphson method. If we make the
reasonable assumption that the domain of the operator LI as defined in Section §3.1
stays in the range [0, 1], the operator fulfills the Lipschitz condition (5.1) with CI = 1.

Offline phase. Like in the previous example, we compute the reduced basis
spaces on the PALMA cluster using 24 cores for (A) subsequent execution of EI-
greedy and POD-greedy algorithms and (B) the PODEI-greedy algorithm. This
time a third run (C) with a “true” error indicator η(µ) =

∥∥uKh (µ)− uKred(µ)
∥∥
Wh



NONLINEAR EMPIRICAL OPERATOR INTERPOLATION 27

(b) Parameter selection EI-Greedy (c) Parameter selection POD-Greedy

(a) Parameter selection PODEI-Greedy

Figure 6.5. Illustration of the final training parameter sets Mmref

train after (a) mref = 3, (b)
mref = 0 and (c) mref = 1 refinement steps. The vertices match with the parameters in the train-
ing sets and the overlaying bubble plots illustrates how frequently a parameter is picked for basis
extension.

instead of the error estimator is executed in order to assess the suitability of the error
estimator for the basis generation. This question is discussed in §6.3 below.

Again, we apply the adaptation technique described in [13] on the parameter
space. The fixed parameter sampling set for the EI-greedy algorithm consists of
120 parameter vectors distributed as illustrated in Figure 6.5(b). The vertices of the
drawn grid match with the training parameters. For the POD-greedy algorithm the
same initial parameter set M0

train is chosen, whereas the PODEI-greedy algorithm
starts with 30 training parameters. The result of the adaptive refinement procedures
is illustrated in Figures 6.5(a)+(c). The training set in case (A) has been refined once
with a final number of 209 parameter vectors, and in case (B) where we started with a
coarser grid, has been refined three times resulting in a set of size 305. Furthermore,
Figure 6.5 shows that parameters which are often selected for basis extension, correlate
with the refined parts of the grids. Here, we nicely observe two facts: First, solutions
that show a complex evolution over time, are selected more frequently until they
are approximated well enough, and second for parameters with solutions evolving
more linear in time, few or even zero snapshots are sufficient, because these can be
approximated by linear combinations of other basis functions.

In case (A) the empirical interpolation algorithm takes 38.5 minutes until it
reaches the final number of 425 basis functions and the computation of the detailed
simulations for all training set parameters takes 4 minutes. The reduced basis space
generation terminates after 2.1 hours and 99 generated reduced basis functions. It
does not reach the targeted error of εtol = 10−4 because after 99 basis extensions no
snapshots can be found which reduce the maximum error estimate over the training
parameter set. Figure 6.6(b) illustrating the decrease of the error estimates during the
basis extension suggest that the reason for the stagnation comes from a bad estimation
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Figure 6.6. Illustration of (a) the extension steps during PODEI-greedy at which reduced basis
functions were discarded (marked with a cross) and (b) the error decrease during basis extension
with growing reduced basis size.

of the empirical operator interpolation: The stagnation begins after the refinement
step which is indicated by the strong peak in the error curve, i.e. when the current
training set differs from the one used for the EI-greedy algorithm.

In case (B) the synchronised generation of basis functions takes about 4 hours, but
reaches the a priori given error tolerance εtol = 10−4. The initial collateral reduced
basis is generated in about two minutes with a coarse training setMcoarse

train containing
only the extremal points of the parameter space and after Msmall = 20 basis functions
have been generated.

The Lebesgue constant ΛM of the collateral reduced basis space (c.f. 2.2 grows
in both cases linearly with a maximum of 153 in case (A) and 203 in case (B).

For details, on the offline computation times, we refer to Table 6.2. The table
nicely shows that for case (B) very reasonable M–N correlations are inferred from the
synchronised basis extension and even a basis of better quality is produced: Compar-
ing lines with similar maximum errors over the validation set of 100 parameters, the
reduced basis from (B) needs less basis vectors which have been generated in a shorter
offline phase. For example the maximum error of 3.54 · 10−5 is reached with basis
dimensions (N,M) = (93, 358) which can be generated in 2.72 hours, whereas Table
6.2(A) shows that the worse error of 4.06 · 10−5 needs basis size (N,M) = (99, 425)
and basis generation time of 3.3 hours.

Figure 6.6(a) illustrates how often and how frequently basis functions are dis-
carded during the execution of the PODEI-greedy algorithm. The right hand side
plot compares the error estimation decrease during POD-greedy and the PODEI-
greedy extension. The latter needs more extension steps in order to reach a certain
basis space dimension, because some basis functions are discarded as indicated by the
crossed marks. Note also that both error curves have intermediate peaks because of
the adaptation of the parameter training set. As the maximum error is computed
over the current training parameter set, it grows after such a refinement step, when
more parameters are added.

Online phase. Figure 6.7 shows cross-section plots of detailed and reduced simu-
lation snapshots of the two worst solutions from a set of 100 randomly chosen solution
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Figure 6.7. Comparison of cross–section plots at x2 = 0.6 between detailed and reduced
simulation snapshots for different time instances and parameters with worst and seconds worst
error from a random test set of 100 parameters: µworst,1 = (1.349, 7.293 · 10−5, 0.013) and

µworst,2 = (1.737, 5.758 · 10−5, 0.021).

trajectories. Visually, there are no differences between the dashed curve of the detailed
and the solid curve of the reduced solution snapshots. This indicates that dispersion
effects arising from the additional approximation are negligible for this example.

To quantify the reduced simulations quality, we proceed exactly as we did in the
previous section for the Burgers problem. We again pick a test sample Mtest ⊂
M of 100 randomly chosen values from the parameter space, measure the error
‖uh(µ)− ured(µ)‖L∞([0,Tmax];Wh) for all µ ∈ Mtest and compare the computation
times of detailed and reduced simulations. Results for different magnitudes of the
reduced bases dimensions M and N are shown in Table 6.2. Note, that the run–times
are averaged over the test parameter set, and actually show a high deviation from this
mean by factors up to 10, because the number of Newton steps that are needed to
proceed between time–steps varies noticeably. For linear problems one Newton step is
enough, whereas up to a maximum of 30 Newton steps for stronger non–linearities, i.e.
µ2 > 1 are necessary. Consequently, the acceleration factors for reduced simulations
with maximum reduced basis dimensions also differ notably.

6.3. A posteriori error estimator. The a posteriori error estimator from §5
has two main purposes: It should first give a tight and rigorous bound on the real
error made through the model order reduction, and second improve the run–time of
basis generation algorithms by providing an efficient and trust–worthy error indicator.
In this section, we evaluate how good both these tasks are fulfilled.

In a first test, we check the efficiency of the error estimator

λ(µ) :=
ηKN,M,M ′(µ)∥∥uKh (µ)− uKred(µ)

∥∥
Wh

(6.5)

for a random sample of 100 parameters and different values for the extra collateral
basis functions M ′ used to estimate the interpolation error. We expect λ(µ) to be
greater than one, meaning the estimator is rigorous, i.e. does not underestimate the
real error. On the other hand, it is desirable that the efficiency is very close to one.

Recall our assumption, that a large enough collateral reduced basis allows inter-
polated operator evaluations to be almost exact. This gives rise to assess the empirical
operator interpolation error with basis dimension M by comparing it to the finer in-
terpolation with basis dimension M + M ′. One question that needs to be answered
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N M ø-run–time[s] max. error offline time[h]

H = 10000 − 55.38 0.00 0
17 71 1.57 3.56 · 10−3 1.35
33 142 1.95 8.33 · 10−4 1.67
50 213 2.51 2.08 · 10−4 2.07
66 283 3.19 5.88 · 10−5 2.43
83 354 4.07 5.55 · 10−5 2.88
99 425 5.3 4.06 · 10−5 3.3
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N
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N M ø-run–time[s] max. error offline time[h]

H = 10000 − 55.38 0.00 0
19 72 1.61 3.01 · 10−3 0.16
37 143 2.07 7.90 · 10−4 0.45
56 215 2.67 1.66 · 10−4 1.01
74 286 3.6 6.36 · 10−5 1.69
93 358 4.83 3.54 · 10−5 2.72
111 429 6.55 1.96 · 10−5 4.02
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,
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‖

N M ø-run–time[s] max. error offline time[h]

H = 10000 − 55.38 0.00 0
17 71 1.46 2.97 · 10−3 1.26
33 142 1.83 5.87 · 10−4 1.91
50 213 2.31 1.24 · 10−4 2.64
67 283 3.32 6.30 · 10−5 3.49
83 354 4.06 3.19 · 10−5 4.31
100 425 5.99 1.34 · 10−5 5.64

Table 6.2
Run–time comparison for detailed simulation with reduced simulations of varying reduced di-

mensionalities. The average run–times and maximum errors are obtained over a test sampleMtest ⊂
Mof size 100. The maximum error is obtained as max(µ,k)∈Mtest×[0,...,K]

∥∥ukh(µ)− ukred(µ)
∥∥
Wh .

Subtable (c) is based on a reduced basis generated with a “true” error indicator η(µ) =∥∥uKh (µ)− uKred(µ)
∥∥
Wh .

empirically here, is whether this assumption is valid and if yes, how big M ′ needs
to be chosen. The results of our experiments are illustrated in Figure 6.8: The plot
shows statistical data of the measured effectivities for different error estimators, i.e.
different values for M ′. We observe that the mean effectivity is slightly above 10 for
M ′ = 1 and stabilizes at about 12 for small M ′ already. The latter gives rise to our
assumption that the empirical interpolation error is well approximated by a small set
of extra basis functions.

As the standard deviation of the error estimator’s efficiency is still in a reasonable
range for the sample parameters in this test, we can expect the estimator to have
a good qualification as an error indicator for the POD-greedy and the PODEI-
greedy algorithms. This is confirmed in further test runs where both algorithms are
run several times with different choices of M ′ in the error indicator for the greedy
search. The result are shown in Figure 6.9.

The plots show the maximum error estimates for all parameters from the training
set at each reduced basis extension step during the greedy search algorithm. Here,
the lower black line corresponds to the error curve of the reference run (C) where the
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Figure 6.8. Error bar plot showing mean and standard deviation of error estimator efficiency
over a sample of 100 random parameters for different values of M ′. The dots indicate the minimum
and maximum efficiency.
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Figure 6.9. Comparison of estimated error decrease during basis generation with (a) POD-
Greedy and (b) PODEI-greedy algorithm. Different error indicators are used in order to select
the worst approximated trajectories (c.f. Algorithm 4.1). The error indicators vary in the number
of collateral reduced basis functions M ′ used in order to approximate the empirical interpolation
error. The lower indicator curves depict the error decrease during a POD-greedy with “true”
error indicator η(µ) =

∥∥uKred(µ)− uKh (µ)
∥∥
Wh .

greedy extension algorithm is used with the “true” error
∥∥uKred(µ)− uKh (µ)

∥∥
Wh

as an

indicator. We observe, that, in general, all plots show an error decrease at a rate
similar to the reference plot. Only the POD-greedy algorithm makes an exception
— after the last adaptation of the training parameter set at about N = 60. The
reason for this behaviour can be the non–adaptive training parameter set used for
the collateral reduced basis space. No matter what value has been chosen for M ′,
the runs show no qualitiative deviation. Table 6.2 shows that the error reduction
obtained with reduced basis spaces generated with greedy search algorithms based on
the error estimator is of comparable quality to the “optimal” values of Table 6.2(C),
while the offline time is reduced significantly. The effect is especially salient for small
basis spaces generated with the PODEI-greedy algorithm. All this confirms our
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assumption that the estimator is a valid error indicator for the greedy search —
already with a small number of extra collateral basis functions.

7. Outlook and conclusion. With sophisticated parametrized evolution prob-
lems in mind, we developed an empirical operator interpolation technique for nonlinear
discrete operators and their directional derivatives. This allows to apply the reduced
basis framework to nonlinear evolution problems. We exemplified the approach for
finite volume approximations where Newton’s method is used to solve the resulting
nonlinear systems. We derived a new a posteriori error estimator for the error between
reduced and detailed simulations, and showed that it helps to accelerate the reduced
basis generation during the offline phase. Furthermore, we introduced a new greedy
algorithm that extends the reduced basis spaces for the empirical interpolation of the
discrete operators and the numerical scheme in a synchronised way. In particular the
relation of the dimensions of the reduced and the collateral reduced basis spaces is
detected automatically. This new algorithm avoids high dimensional computations
for large training parameter sets in the offline phase for the empirical interpolation
and frees the experimenter from the necessity to make a priori assumptions on the
M–N correlation. In contrast, the subsequent execution of EI-greedy and POD-
greedy algorithms relies on a good initial parameter space in order to minimize the
pre–computed simulations and on an assumption on the relation between the interpo-
lation error of the EI-greedy algorithm and the targeted error of the POD-greedy
algorithm.

We demonstrated, that the reduced basis methodology respectively the interpola-
tion procedure is able to detect spatial redundancy. In the given examples, it realizes
not only spatial compression but even symmetry detection. In our experiments, the
reduced models have shown an acceleration of at least one order of magnitude. The re-
duced basis framework developed in this paper, allows to consider numerical schemes
with all kind of implicit and explicit discretizations.

For our problems, the reduced basis sizes grow very fast and in case of even more
complex dependencies of the solutions on the parameter, the model order reduction
effects could become void with the current procedure. As future work will deal with
more complex problems depending on the coupling of different equations or very
high dimensional parametrizations, more sophisticated basis generation algorithms are
necessary. Here, we can improve the methods by more intelligent search algorithms in
the parameter space and by producing smaller bases for reasonably selected subsets
of the parameter space or the time interval as proposed in [8, 13].

Acknowledgement. The authors would like to acknowledge the reviewers for
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